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Abstract

Sliced inverse regression (SIR) is a renowned dimension reduction method for finding

an effective low-dimensional linear subspace. Like many other linear methods, SIR can

be extended to nonlinear setting via the “kernel trick”. The main focus of this article is

twofold. The first is on the implementation algorithm of kernel SIR for fast computation.

The other is on kernel SIR’s ability to combine with other linear learning algorithms for

classification and regression. Numerical experiments show that kernel SIR is an effective

kernel tool for nonlinear dimension reduction and it can easily combine with other linear

algorithms to form a powerful toolkit for nonlinear data analysis.
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1 Introduction

Dimension reduction is an important topic in machine learning and data mining. The

main demand comes from complex data analysis, data visualization and parsimonious

modeling (Alpaydm, 2004; Cook, 1998). Modern data are usually complex, high-dimensional

and with nonlinear structures. A dimension reduction technique helps us to characterize

the key data structure using only a few main features ranked by their importance. It

thus provides a way for data visualization to gain better intuitive insights of the un-

derlying data. The most popular dimension reduction method is probably the principal

component analysis (PCA), which is an unsupervised method. In the contrast, the sliced

inverse regression (SIR) (Li, 1991) extracts the dimension reduction subspace based on

the covariance matrix of input attributes inversely regressed on the responses. SIR can

be viewed as a supervised companion of PCA for linear dimension reduction. SIR has

won its reputation to perform well in dimension reduction and related applications and

has gained great attention in statistical literature (Chen & Li, 1998; Cook, 1998; Duan

& Li, 1991; Hall & Li, 1993; Li, 1991, 1997). The work by Wu (Wu, n.d.) extends the

classical SIR to nonlinear dimension reduction via the kernel method. This extension is

named kernel sliced inverse regression (KSIR), and is applied to support vector classifica-

tion. In this article we go for a further study and emphasize on KSIR’s implementation

technique, its ability to combine with other linear algorithms and its applications to

support vector classification as well as regression.

The subsequent sections are organized as follows. Section 2 gives a brief review of the

classical SIR. Section 3 introduces its kernel extension in a reproducing kernel Hilbert

space (RKHS) framework and provides some insight into the technical conditions. The-

ory that leads to the estimation of feature dimension reduction subspace is given. In the

same section, a fast implementation algorithm is prescribed and some numerical issues

are discussed. Section 4 is on numerical experiments and results. Concluding remarks

are in Section 5. Some further theoretical properties for KSIR are in the Appendix.
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2 Sliced Inverse Regression

Different from other dimension reduction methods, SIR summarizes a regression or clas-

sification model as follows:

y = f(β′1x, . . . , β′dx; ε), βk,x ∈ Rp, (1)

where d (often ¿ p) is the effective dimensionality and {β1, . . . , βd} forms a basis of

the effective dimension reduction (e.d.r.) subspace. The model above implies that

most of the relevant information in x about y is contained in {β′1x, . . . , β′dx}. The

dimensionality of input attributes gets cut down from p to d. The model (1) does not

impose any structure on f , which can be any linear or nonlinear form. This model has

only assumed that the effects of input attributes x on the output variable y can be

characterized by a certain low-dimensional projection onto the linear subspace spanned

by {β1, . . . , βd}. That is to say, the reduced input attributes (β′1x, . . . , β′dx) carry as

much information about y as the original x. The model (1) takes the weakest form for

linear dimension reduction. It only assumes the existence of some low-dimensional linear

subspace without imposing any parametric structure on f . With this model (1) and the

linear design condition (LDC) defined below, SIR then extracts the e.d.r. subspace by

using the notion of inverse regression (Duan & Li, 1991; Li, 1991). Define the central

inverse regression function as follows:

g(y) = E(x|y)−E(x) ∈ Rp.

We say that {β1, . . . , βd} satisfies the LDC, if, for any b ∈ Rp, the conditional expectation

E(b′x|β′1x, . . . , β′dx) is affine linear in {β′1x, . . . , β′dx}. That is, there exist some constants

c0, c1, . . . , cd such that

E(b′x|(β′1x, . . . , β′dx)) = c0 + c1β
′
1x + · · ·+ cdβ

′
dx. (2)

With the model (1) and the LDC (2), it can be shown (Li, 1991) that the basis of the e.d.r.

subspace can be estimated by the leading directions from the generalized eigenvalue
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decomposition of Cov(g), denoted by ΣE(x|y), with respect to Cov(x), denoted by Σx.

SIR is devised to find such leading directions. In other words, with x being standardized,

SIR finds the leading directions that the central inverse regression function g(y) has

the largest variation. These are the most informative directions in the input space for

describing y. In practical supervised learning tasks, the joint distribution of the input

vector x and the output variable y is unknown but fixed. We use bold-faced x and y for

random vectors and variables and italic letters x and y for their realizations. Suppose

we have a data set

D := {(x1, y1), . . . , (xn, yn)},

each pair (xi, yi) is an instance xi ∈ Rp with its response or class label yi. Let A ∈ Rn×p

be the data matrix of input attributes and Y = (y1, . . . , yn)′ ∈ Rn be the corresponding

responses. Each row of A represents an observation, xi. The empirical data version of

sliced inverse regression finds the dimension reduction directions by solving the following

generalized eigenvalue problem based on empirical data D:

ΣE(A|YJ )β = λΣAβ, (3)

where ΣA is the sample covariance matrix of A, YJ denotes the membership of slices

and there are J many slices, and ΣE(A|YJ ) denotes the between-slice sample covariance

matrix based on sliced means given by

ΣE(A|YJ ) =
1
n

J∑

j=1

nj(x̄j − x̄)(x̄j − x̄)′.

Here x̄ is the sample grand mean, x̄j = 1
nj

∑
i∈Sj

xi is the sample mean for the jth slice

and Sj is the index set for jth slice. Note that the slices are extracted from A according

to the sorted responses Y . For classification, x̄j is simply the sample mean of input

attributes for the jth class. There is an equivalent way to modeling SIR. We consider

the following optimization problem

max
β∈Rp

β′ΣE(A|YJ )β subject to β′ΣAβ = 1. (4)
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The solution, denoted by β1, gives the first e.d.r. direction such that class means pro-

jected along β1 are most spreading out, where β1 is normalized with respect to the

sample covariance matrix ΣA. Repeatedly solving this optimization problem with the

orthogonality constraints βkΣAβl = δk,l, where δk,l is the Kronecker delta, the sequence

of solutions β1, . . . , βd form the e.d.r. basis. Some insightful discussion to enhance the

SIR methodology and applications can be found in Chen and Li (Chen & Li, 1998).

3 Kernel Extension for SIR

The classical SIR is designed to find a linear transformation from the input space to

a low dimensional e.d.r. subspace that keeps as much information as possible for the

output variable y. However, it does not work for nonlinear feature extraction and it fails

to find linear directions being in the null space or having small angles to the null space

of ΣE(x|y). The following regression example taken from Friedman (Friedman, 1991) is

used for illustrative purpose for KSIR. This example has explanatory variables in R10:

y = f(x1, . . . ,x10; ε) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, (5)

where x = (x1, . . . ,x10) are independent and identically distributed (iid) uniform random

variables over [0, 1] and ε
iid∼ N(0, 1). SIR fails to find the direction along the x3-

coordinate due to its symmetric structure to the vertical axis at x3 = 0.5. The variance

of E(x3|y) is zero and hence scaled principal components based on ΣE(x|y) will not find

the direction of x3-axis. For the Friedman example, the function’s key features can be

easily described by a few nonlinear components extracted by KSIR. Experimental study

of it can be found in a later section.

3.1 Geometric framework and properties

In SIR, the model assumption (1) says that there exists a linear dimension reduction

subspace and that the underlying objective function f can be any linear or nonlinear
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form in that subspace. In looking for a nonlinear extension, the original input space is

embedded to a high dimensional feature space Z via the feature map

Φ : X ⊂ Rp 7→ Z, (6)

where Φ(x) is the kernel spectrum for a certain positive definite kernel, i.e., K(x, u) =

Φ(x)′Φ(u). The following dimension reduction model in the feature space Z is assumed

y = f(β′1z, . . . , β
′
dz; ε), βk, z ∈ Z. (7)

In other words, there exist β1, . . . , βd ∈ Z such that y and z are conditionally indepen-

dent given {β′1z, . . . , β′dz}. See Wu (Wu, n.d.) for the kernel extension of SIR in the

framework of Z. As the feature space Z is often not explicitly known to us, we will then

look for a substitute with explicit expression. As part of the key purposes of dimension

reduction are feature extraction and data visualization, a concrete feature space is nec-

essary. We, therefore, transform the feature space Z to an isometric isomorphic space,

which is explicitly known and where data can be observed. Consider an alternative

feature map Γ : X 7→ HK given by

x 7→ Γ(x) := K(x, ·). (8)

Kernels used here are positive definite, also known as reproducing kernels. For a given

positive definite kernel K, its associated Hilbert space consists of all finite kernel mixtures
∑m

i=1 aiK(x, ui) and their limits, where m ∈ N, ui ∈ Rp and ai ∈ R all can be arbitrary.

This Hilbert space is known as the reproducing kernel Hilbert space (RKHS), denoted

by HK . Throughout this article we assume that all the reproducing kernels employed

are (C1) symmetric (i.e., K(x, u) = K(u, x)) and measurable, (C2) of trace type, i.e.,
∫
X K(x, x)dµ < ∞ and (C3) for x 6= u, K(x, ·) 6= K(u, ·) in L2(X , µ) sense for some

underlying continuous probability distribution µ. The distribution µ need not be the

same as the distribution of x. The original input space X is then embedded into a new

feature space HK via the transformation Γ. Each input point x ∈ X is mapped to an

element K(x, ·) ∈ HK . Let J : Z 7→ HK be a map from the spectrum-based feature

6

wangcheng1
Underline
subset of l_2?



space Z to the kernel associated Hilbert space HK defined by J (Φ(x)) = K(x, ·). By

condition (C2) and the reproducing property

〈K(x, ·), f(·)〉HK
= f(x), ∀f ∈ HK , ∀x ∈ X ,

it is easy to verify that J is a one-to-one linear transformation satisfying

‖z‖2
Z = ‖Φ(x)‖2

Z = K(x, x) = ‖K(x, ·)‖2
HK

= ‖J (z)‖2
2.

Thus, Φ(X ) and Γ(X ) are isometrically isomorphic, and the two feature representations

(6) and (8) are equivalent in this sense. We will work directly on the latter feature

representation (8), which is explicit and concrete.

The classical SIR solves a generalized spectrum decomposition of the between-slice

covariance matrix in the pattern Euclidean space Rp. Similarly, KSIR solves a gener-

alized spectrum decomposition of the between-slice covariance operator in the feature

RKHS HK . The following two definitions place the notions of e.d.r. subspace and LDC

in the framework of HK .

Definition 1 (e.d.r. subspace in HK) Let H = {h1, . . . , hd} be a collection of ele-

ments in HK , and let H be the linear subspace spanned by elements in H. We say that H
is an e.d.r. subspace if y and x are conditionally independent given {h1(x), . . . , hd(x)},
i.e., information about y in x is contained in {h1(x), . . . , hd(x)}. We name hk’s the

e.d.r. directions, H the e.d.r. subspace and hk(x)’s the e.d.r. variates.

One can picture hk ∈ HK as the image of βk ∈ Z via J and βk as the pre-image of hk.

This gives an interplay between the e.d.r. directions in Z and in HK . Note that, by the

isomorphism and the kernel reproducing property, we have

β′kz = 〈hk(·),K(x, ·)〉HK
= hk(x).

Then the e.d.r. model (7) becomes

y = f(h1(x), · · · , hd(x); ε),
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where h1(x), . . . , hd(x) are nonlinear functional variates of x. Let ` : HK 7→ R be

an arbitrary linear functional. By Riesz representation Theorem (Wahba, 1999), there

exists an f ∈ HK so that

`(K(x, ·)) = 〈K(x, ·), f(·)〉HK
= f(x). (9)

Conversely, any f ∈ HK defines a linear functional through (9). Thus, the functional

variate f(x) can be viewed as an analog to b′x. It leads to the functional version of the

linear design condition for KSIR.

Definition 2 (linear design condition in HK) Let H = {h1, . . . , hd} be a collection

of elements in HK . H is say to satisfy the linear design condition, if the following

statement holds. For any f ∈ HK ,

E(f(x)|h1(x), . . . , hd(x)) = c0 + c1h1(x) + · · ·+ cdhd(x) (10)

for some constants c0, c1, . . . , cd.

At the first glance, this LDC seems more restrictive than the one given by (2) for the

classical SIR. Actually, it is not the case. Condition (10) says that the regression of f on

hk is affine linear where hk’s are kernel mixtures yet to be estimated. As kernel functions

are abundant and flexible building blocks, it can be shown that any smooth function

can be well approximated by a kernel mixture (Saitoh, 1997; Thompson & Tapia, 1990).

Therefore, condition (10) is not as restrictive as the LDC (2) in the Euclidean space.

The philosophy is that, linearity in an Euclidean space is much stricter than linearity in

an RKHS. The former is in terms of linear combinations of x1, . . . , xp, while the latter

is in terms of linear combinations of kernels, which form a large body of functions of

various shapes. In fact, the linearity in HK is equivalent to the linearity in the feature

space Z. An elliptically symmetric distribution of data scatter in the e.d.r. subspace

will ensure the validity of LDC. Some mild departure from the elliptical symmetry in

the e.d.r. subspace will not hurt the application of SIR (Li, 1991, 1997). For KSIR,

the kernel transform has mapped the data into a very high dimensional feature Hilbert
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space, and we look for low-dimensional projections therein. Low-dimensional projections

from high-dimensional data are known to be able to improve the elliptical symmetry of

data distribution (Diaconis & Freedman, 1984; Hall & Li, 1993).

The goal of KSIR is to estimate the e.d.r. directions hk’s. Note that the mapped

image K(x, ·) is a random element in HK . Similar to the classical SIR, KSIR finds the

e.d.r. directions by solving a generalized spectrum decomposition problem. In practice

and in finite sample case, we have to work on an approximation subspace of HK with a

finite basis set, say {K(·, A)} = {K(·, x1), . . . ,K(·, xn)}. Other choices of basis sets are

fine, too, as long as they represent a distribution similar to the distribution of training

input attributes. It is the key idea of our approximation to KSIR in Section 3.2. For

simplicity and better intuition, we will work on a finite basis approximation subspace

in the main body of this article. The functional version is given in the Appendix for

interested readers. With the finite basis set approximation, the e.d.r. variates and an

arbitrary nonlinear variate f(x) can be represented as

hk(x) = K(x, A)αk for some αk ∈ Rn, k = 1, . . . , d, and

f(x) = K(x, A)a for some a = (a1, . . . , an) ∈ Rn.

Let T = K(x, A)′ a random column vector in Rn. The LDC in Definition 2 can be

restated as shown below using finite basis approximation:

E(a′T |α′1T, . . . , α′dT ) = c0 + c1α
′
1T + · · ·+ cdα

′
dT, ∀a ∈ Rn. (11)

With this finite basis, kernel data are given by {K(xi, A)}n
i=1. Collect them into a

matrix form (observations by row and variables by column) we get the kernel data

matrix K = K(A,A) ∈ Rn×n where K(A,A)ij = Φ(xi)′Φ(xj). The second argument

A in K(A,A) is used for kernel basis. With the introduction of a finite basis set, the

e.d.r. directions and the subspace can be described in terms of finite-dimensional vectors

and vector spaces. By taking such basis set K(·, A), the KSIR procedure is simply the

classical SIR with T = K(x, A)′ and y. Hence Theorem 3.1 of Li (Li, 1991) leads to the

following theorem.
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Theorem 1 Assume the existence of an e.d.r. subspaceH = span{K(x, A)α1, . . . ,K(x, A)αd}
and the LDC (11). Then the central inverse regression vector falls into the subspace

spanned by {ΣT α1, . . . , ΣT αd}, i.e.,

E(T |y)− E(T ) ∈ span{ΣT α1, . . . ,ΣT αd}, (12)

where ΣT is the covariance matrix of T = K(x, A)′.

Theorem 1 is stated in terms of a finite-dimensional approximation using the basis set

K(·, A) for practical simplicity. A more general functional version of the theorem can

be found in the Appendix. It formulates KSIR as a generalized spectrum decomposition

of the between-slice covariance operator in an RKHS framework. From (12) we see that

the central inverse regression of T on y degenerates at any directions orthogonal to

span{ΣT α1, . . . , ΣT αd}. Thus, the covariance matrix of E(T |y)− E(T ) provides a way

for estimating the e.d.r. subspace H. In other words, to estimate the e.d.r. directions,

we solve the following generalized eigenvalue problem:

ΣE(T |y)α = λΣT α (13)

or equivalently

max
α∈Rp

α′ΣE(T |y)α subject to α′ΣT α = 1. (14)

Equation (13) is only used for illustrative purpose. We will not solve this generalized

eigenvalue problem directly. Instead, we implement KSIR in a different way for numerical

consideration and fast computation. The implementation is explained below. Let πj be

the proportional size (or prior probability) of the jth slice. Consider the eigenvalue

decomposition of W ′Σ−1
T W as UDU ′, where W consists of centered and weighted slice

means. Precisely, the jth column of W is given by

wj =
√

πj (E(T |yi, i ∈ Sj)− E(T )) .

Since the eigenvector(s) associated with the zero eigenvalue has no information for y, we

may restrict U and D to eigenvectors with non-zero eigenvalues. For simplicity, assume
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there is only one zero eigenvalue. Then, U has size J × (J − 1) and whose columns are

formed by eigenvectors and D is a (J − 1) × (J − 1) diagonal matrix with descending

and non-zero eigenvalues. From Theorem 1, we know that the column space spanned

by Σ−1
T W , denoted by C(Σ−1

T W ), provides a way of estimating the e.d.r. subspace.

However, it only tells that C(Σ−1
T W ) is part (or the whole) of the e.d.r. subspace, but it

does not provide the individual orthonormal basis vectors. In the following Proposition,

we will give the orthonormal basis set, which are simply the e.d.r. directions.

Proposition 2 (e.d.r. directions) The orthonormalized e.d.r. directions are given by

columns of Σ−1
T WUD−1/2.

Proof: Since C(Σ−1
T W ) is in the e.d.r. subspace, we are then looking for an orthonormal

basis, denoted by V , for C(Σ−1
T W ), where the orthonormality is in terms of V ′ΣT V = I.

The singular value decomposition (SVD) is the most direct way to find orthonormal basis

for column space for a given matrix. As the normalization is in terms of V ′ΣT V = I,

a common SVD is applied to the matrix Σ−1/2
T W . Since only right singular vectors are

needed for column orthonormalization, the right singular vectors can be solved from the

eigenvalue decomposition of the following square matrix:

(Σ−1/2
T W )′(Σ−1/2

T W ) = W ′Σ−1
T W = UDU ′,

where D is a diagonal matrix of size (J−1)×(J−1) with descending nonzero eigenvalues

and U is a matrix of size J × (J − 1) consisting of associated eigenvectors. Let V =

Σ−1
T WUD−1/2. Its columns are still in the column space C(Σ−1

T W ) and hence are still

in the e.d.r. subspace. It is then only left to check the orthonormality:

V ′ΣT V = (D−1/2U ′W ′Σ−1
T )ΣT (Σ−1

T WUD−1/2) = D−1/2U ′UDU ′UD−1/2 = I.

The proof is completed. 2

Note that if only a few leading directions are needed, we can use only leading columns

from U and corresponding leading diagonal elements from D.
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Proposition 2 is a population version. In practical data analysis sample estimates

based on the given data D are used to replace all the population-based quantities. The

sample covariance matrices ΣE(K|YJ ) and ΣK are used to replace the population covari-

ance matrices ΣE(T |y) and ΣT , respectively. Also the following sample estimates for the

centered weighted slice means are used to replace their population versions:

wj =
√

nj/n

(
1′nj

K(ASj , A)

nj
− 1′nK(A,A)

n

)′
,

where 1′nj
K(ASj , A)/nj and 1′nK(A,A)/n are respectively the jth slice sample mean

and the grand mean of K(A,A). Note that then WW ′ = ΣE(K|YJ ) is the between-slice

sample covariance. The sample covariance matrix ΣK is singular and is often having

much lower effective rank than its size. This low-effective-rank phenomenon causes

numerical instability and poor e.d.r. directions estimation. We will discuss this issue

and its remedy in next subsection.

3.2 Approximation to KSIR for fast computation

In many real world applications, the effective rank of the covariance matrix of kernel

data is very low. This causes the numerical instability and leads to inferior estimation

of the e.d.r. directions. Adding a ridge-type regularization term is a common way to

solve the numerical instability. That is to add a small diagonal matrix εI to ΣK . This

ridge-type regularization though lessens the numerical instability, it does not solve the

inferior estimation problem. The kernel data matrix has much lower effective rank than

the data size n. Ridge-type regularization acts like appending unnecessary and nuisance

coordinate axes to the effective and useful axes. Though the magnitude along each

nuisance coordinate is small but there are many of them, which can add up to have

an influential effect and leads to poor estimates. An appropriate way to deal with the

problem is to find a reduced-column approximation to K, denoted by K̃, so that K̃ has

full column rank and its column space C(K̃) provides a good approximation to C(K).

This approximation will enhance the numerical stability without much information loss.
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Therefore, throughout this article we will adopt a reduced-column approximation in-

stead of a ridge-type regularization for the singularity problem. The reduced-column

approximation will cut down the problem size of the generalized spectrum decomposi-

tion required in the e.d.r. directions estimation and will also speed up the computation

of it.

Let P̃ be a projection matrix of size n×ñ, which satisfies P̃ ′P̃ = Iñ. Given a reduced-

column kernel data K̃ := KP̃ , the approximation of KSIR is to solve the following

reduced generalized eigenvalue problem:

ΣE(K̃|YJ )α̃ = λΣK̃ α̃, (15)

which is of much smaller size, as ñ ¿ n. With the use of reduced kernel K̃, the

corresponding centered weighted slice means are given by W̃ñ×J with the jth column

w̃j =
√

nj/n

(
1′nj

K̃Sj

nj
− 1′nK̃

n

)′
,

where 1′nj
K̃Sj/nj and 1′nK̃/n are respectively the jth slice mean and the grand mean of

K̃. We can also apply Proposition 2 to the reduced problem (15) and the resulting e.d.r.

directions are given by Ṽ = Σ−1
K̃

W̃ ŨD̃−1/2, where Ũ and D̃ are the eigenvectors and

eigenvalues for W̃ ′Σ−1
K̃

W̃ . Here, Σ−1
K̃

exists if a proper projection P̃ is used. The KSIR

algorithm using a reduced kernel approximation is given in Table 1. Two strategies for

choosing a low-rank projection matrix P̃ are discussed after the algorithm.

Reduced kernel approximation by optimal basis. The SVD gives the optimal low-rank

projection to get a reduced kernel. The SVD step aims to cut the number of kernel

columns to its effective rank to avoid the numerical instability and to cope with the

difficulty encountered in e.d.r. directions estimation. Consider the SVD of the centered

full kernel matrix: (
In − 1n1′n

n

)
K = GΛP ′,

where G′G = I, P ′P = I and Λ is a diagonal matrix with descending singular values.

Often the diagonal elements decay to zero very fast (Lee & Huang, 2007) and we need
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Table 1: KSIR Algorithm

KSIR Algorithm

Input: reduced kernel matrix K̃ an n× ñ matrix and YJ an n-vector.

Output: KSIR directions Vñ×(J−1) and associated eigenvalues d(J−1)×1.

1. Compute the centered and weighted slice means W̃ñ×J ;

// J is the number of slices //

2. Compute the covariance matrix ΣK̃ of the reduced kernel;

3. Compute the eigenvalue decomposition of W̃ ′Σ−1

K̃
W̃ as ŨD̃Ũ ′;

// O(J3) for solving the eigenvalue problem //

// D̃ and Ũ consist of non-zero eigenvalues and associated eigenvectors //

// O(ñ3) for solving the linear system ΣK̃X = W̃ to get Σ−1

K̃
W̃ //

4. V ← Σ−1

K̃
W̃ ŨD̃− 1

2 ; d ← diagonal{D̃}.

only a small number of leading eigenvectors to approximate the centered K:
(

In − 1n1′n
n

)
K = GΛP ′ ≈ G̃Λ̃P̃ ′,

where G̃ and P̃ , both say of the size n × ñ, consist of ñ leading columns of G and P ,

respectively, and Λ̃, of size ñ× ñ, consists of leading diagonals of Λ. We will work on the

reduced-column kernel matrix K̃ := KP̃ for the KSIR procedure. Note that Proposition

2 also applies to K̃, and P can be obtained from the eigenvalue decomposition of Cov(K):

Cov(K) := ΣK = PSP ′ ≈ P̃ S̃P̃ ′, where S = Λ2 and S̃ = Λ̃2.

Also note that

Cov(K̃) := ΣK̃ =
1
n

P̃ ′K
(

In − 1n1′n
n

)
KP̃ = P̃ ′ΣK P̃ = S̃,

which makes the inverse of ΣK̃ readily there. In other words, Σ−1
K̃

in KSIR algorithm’s

Step 3 can be obtained from resulting matrices in the SVD preprocessing step. The
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reduced-column matrix by leading singular vectors guarantees the linear independence

among columns. However, this strategy only works for small to median sized kernel

matrix, as for large kernel the computing cost for large eigenvalue problem is heavy and

of complexity O(n3). Sometimes the large-scale data can go beyond the capacity of the

memory size. This SVD step takes up most of the computing time in extracting KSIR

directions. For massive data sets, it is not economic and sometimes can be computa-

tionally difficult or even impossible to compute the optimal basis from the full kernel.

Thus, we provide another strategy to handle the large scale problem.

Reduced kernel approximation by random basis. For median to large sized data sets,

we use the random subset reduced kernel to cut the kernel column size. In the random

subset approach we choose P̃ as a column subset from In. In practice, it is not necessary

to generate the full K nor to calculate the transformation K̃ := KP̃ . Instead we directly

build up K̃ with selected columns only. The basic concept of random subset reduced

kernel technique is to approximate the full kernel by the Nyström approximation:

K(A,A) ≈ K(A, Ã)K(Ã, Ã)−1K(Ã, A) = K̃K(Ã, Ã)−1K̃ ′, (16)

where Ãñ×p is a random subset of A and K(A, Ã) = K̃n×ñ is a reduced kernel consisting

of partial columns of the full kernel. Note that

K(A,A)α ≈ K̃K(Ã, Ã)−1K̃ ′α = K̃α̃,

where α̃ = K(Ã, Ã)−1K̃ ′α is an approximation to the full problem. It means we only use

ñ basis functions {K(·, Ã)} for modeling functions in HK . See (Lee & Huang, 2007) for

more technical details and statistical properties for the random subset approach. The

resulting reduced kernel matrix K̃ has full column rank so that ΣK̃ is well-conditioned.

The singularity problem can be resolved and the computational cost can be cut down

at the same time. Our selection of reduced set is done by a stratified random sampling

from the full set A. From results later in Section 4, we see that the reduced KSIR

performs well while using only partial kernel columns (i.e., partial kernel basis). Note

that the reduction ratio should be more degraded for larger data, since a small ratio of
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a large data often contains enough column basis. From KSIR Algorithm, we can see

the efficiency of KSIR in extracting the e.d.r. directions. The computational cost is one

time of O(ñ3) for Σ−1
K̃

and one time of O(J3) for the eigenvalue problem incurred, where

ñ (¿ n) is at most in the hundreds and J is at most in the tens in our later experiments.

4 Numerical Experiments

In this section, we will design numerical experiments to evaluate the information content

about y contained in the e.d.r. subspace extracted by the proposed approximate KSIR

algorithm. We focus on three kinds of applications of KSIR, namely data visualization,

classification and regression. All experimental examples have two main steps: extract-

ing the e.d.r. subspace and running a linear learning algorithm such as FDA, SVM,

or regularized least squares (RLS) SVR on the e.d.r. variates. We evaluate the effec-

tiveness of KSIR on five binary classification data sets, eight multi-class data sets and

six regression data sets and compare the results with the conventional nonlinear SVM

and SVR using the benchmark algorithm LIBSVM. All the experimental data sets are

described in Tables 2 and 3. The R.S. columns record the proportion of random subset

for reduced kernel approximation used in our experiments. The banana and splice data

sets are from (Mika, Rätsch, Weston, & Schölkpf and K.-R. Müller, 1999). The tree

data set is taken from Image Processing Lab, University of Texas at Arlington1. The

adult and the web data sets are both compiled by Platt (Platt, 1999). The medline2

is a text classification data set. One important characteristic of text classification data

is the large number of variable dimensionality (p À n). Unlike the classical SIR, which

works on p × p between-slice and total covariance matrices, our KSIR algorithm can

easily handle this kind of data sets with p À n by employing linear kernel and works on

the n×n linear kernel data matrix without getting into the difficulty of large covariance

matrices. We defer this special handling to Section 4.2. All the other data sets can be

1http://www-ee.uta.edu/EEweb/IP/training data files.htm
2The medline data set is available at http://www.cc.gatech.edu/∼hpark/data.html
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Table 2: Description of classification data sets used in our experiments.

Data set Classes Training Size Testing Size Attributes R.S. (%)

banana 2 400 4900 2 10%

tree 2 700 11692 18 10%

splice 2 1000 2175 60 10%

adult 2 32561 16281 123 1%

web 2 49749 14951 300 1%

Iris 3 150 - 4 10%

wine 3 178 - 13 10%

vehicle 4 846 - 18 20%

segment 7 2310 - 19 10%

dna 3 2000 1186 180 10%

satimage 6 4435 2000 36 20%

pendigits 10 7494 3498 16 4%

medline 5 1250 1250 22095 100%

obtained from UCI Repository of machine learning data archive (Asuncion & Newman,

2007) and UCI Statlog collection. The nonlinear kernel we used in all experiments is the

radial basis function (Gaussian kernel). All our codes are written in Matlab (MATLAB,

1992) and are available at http://www.stat.sinica.edu.tw/syhuang/.

4.1 Data visualization

SIR and KSIR aim to extract a low dimensional e.d.r. subspace that contains the

information about output variable y as much as possible. The former looks for such a

subspace in the pattern Euclidean space, while the latter in the feature RKHS. Moreover,

both SIR and KSIR algorithms rank the importance of e.d.r. directions by associated

eigenvalues. Thus, we can use the first one or two directions to visualize the main data

structure, which will be otherwise complex in high dimension. Here we show some data

views in a 2-dimensional subspace obtained by PCA, SIR and KSIR, respectively. The
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Table 3: Description of regression data sets used in our experiments.

Data set Size Attributes R.S. (%)

housing 506 13 15%

Comp Activ 1000 1000 21 5%

Kin fh 1000 1000 32 5%

Comp Activ 8129 21 5%

Kin fh 8129 32 5%

Friedman 40768 10 1%

first example is on pendigits data. Training data are used to extract the e.d.r. direc-

tions, and only 14 test points from each category are used to plot the low-dimensional

views to avoid excessive ink. The results are shown in Figure 1. Figures 1(a) and 1(b) are

2D views via PCA and SIR. There are some obvious overlaps among these ten classes.

Figure 1(c) is the 2D view along KSIR directions and Figure 1(d) zooms in a small

crowded region for a better view. We can easily see that KSIR variates provide a much

better discriminant power.

The next two examples are on regression data sets. The first one is the “peaks”

function provided by Matlab. It creates a synthetic regression surface (without additive

noise) using 2-dimensional inputs. The corresponding regression surface plot with 961

points is in Figure 2(a). In our study, we split this data set into 80% and 20% subsets

for training and testing, respectively. Plots of 2D views by PCA, SIR and KSIR are

in Figures 2(b)-(d). As the peaks data have only 2-dimensional inputs, there is not

much sense to talk about dimension reduction for 2D inputs. The purpose of this data

example is to show the relevant linear structure in feature subspace by KSIR as depicted

in Figure 2(d). We can clearly see that the KSIR processing turns the nonlinear structure

in pattern space into a prominent linear structure in kernel feature space. It provides

an empirical justification to combine the KSIR with linear learning algorithms for other

tasks on the e.d.r. feature subspace.

Another regression example is the Friedman’s example (5). There are ten explana-
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Figure 1: 2D views of pendigits data by PCA, SIR and KSIR.

tory variables, but only five of them are effective and the rest are nuisance. There are

linear component, 10x4 +5x5, as well as nonlinear component, sin(πx1x2), and a hidden

e.d.r. direction x3 to SIR in this example. We split the data into 99% and 1% subsets

for training and testing, respectively, for data visualization purpose. The leading ten

eigenvalues by SIR and KSIR are respectively

SIR : 0.7213, 0.0067, 0.0020, 0.0013, 0.0011, 0.0007, 0.0004, 0.0004, 0.0003, 0.0001;

KSIR : 0.9417, 0.6639, 0.2010, 0.0435, 0.0214, 0.0120, 0.0111, 0.0105, 0.0097, 0.0092.

The low-dimensional data views by PCA, SIR and KSIR are shown in Figure 3. Ob-

viously, none of the PCA directions capture a good effective subspace for the response
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Figure 2: 2D views of response vs. the 1st variate by PCA, SIR and KSIR with peaks data.

surface. The first SIR direction does reflect a good description for the response, and the

first KSIR direction is even better and it carries the best information content for the

response among the three methods. Figure 3(c) shows a clearly good linearity of the

first KSIR variate to the response. In summary, the effect of KSIR is not mere dimen-

sion reduction, it also maps the data to low-dimensional nonlinear features via kernel

transform so that the response can be well approximated by a linear form in terms of

these extracted features.
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Figure 3: 2D views of Friedman data by PCA, SIR and KSIR.

4.2 KSIR dimension reduction for classification

The dimension reduction provided by KSIR can be used as a data preprocess for later

task such as classification or regression. In the process of applying SIR or KSIR, the role

of each slice represents the clustering structure of the data. If we know the information

about clustering structure in advance, it helps us to make slices when applying SIR

or KSIR. In classification, the clustering structure has been defined through their class

labels, and slices are made accordingly. We then estimate the central e.d.r. subspace

and map the data onto this subspace for discriminant purpose. In a J-class problem,

we slice the data sets into J slices according to the class labels. Thus, there are at most

J − 1 many independent e.d.r. directions, since the rank of ΣE(A|YJ ) or ΣE(K|YJ ) is at

most J − 1. After extracting the e.d.r. subspace, discriminant analysis becomes much

computationally easier in this very low-dimensional subspace. Since we have turned the

nonlinear structure in the pattern space into an approximately linear structure in the

feature space via kernel transformation, direct application of linear learning algorithms

on KSIR variates is often sufficient. In our classification experiments, we particularly

pick the Fisher linear discriminant analysis (FDA) and the linear smooth support vector

machine (SSVM) (Lee & Mangasarian, 2001) as our baseline learning algorithms. One

property of SSVM is that it is solved in the primal space and its computational com-

plexity depends on the number of input attributes (here the number of KSIR variates).

Smaller number of columns implies less computational load. Note that as data are

21



projected along the KSIR directions, discriminant analysis therein is computationally

light. The FDA and SSVM acting on top of KSIR variates are numerically compared

with the standard nonlinear SVM benchmark algorithm LIBSVM (Chang & Lin., 2001).

One-versus-one scheme is used for SSVM and LIBSVM for multi-class problems.

For binary classification, the data sets put on experiments are already divided into

training set and testing set in advance. We use the training set to build the model,

including extracting the e.d.r. subspace and training for the final model in this e.d.r.

subspace, then evaluate the resulting model using the testing set. As there is some

stochastic variation due to reduced set selection, the procedure is repeated 10 times.

The upper panel of Table 4 lists the average error rates for these binary classifications.

Reduced kernel approximation by random subset with proportion 1% or 10% is used.

For binary classification, KSIR extracts a one-dimensional feature component for dis-

criminant analysis. FDA in this one-dimension subspace is a simple division of the line

through the midpoint of two class centroids. The SSVM division of the line is a bit more

complex than cutting through the midpoint. It is still a maximum margin criterion, but

along a line instead of in a high-dimensional feature space. Results are compared with

nonlinear LIBSVM. Although FDA and SSVM are acting on top of a one-dimension

KSIR variate and reduced kernel approximation has been applied, the results in the

KSIR columns are comparable to those in the LIBSVM column. It means that KSIR ac-

tually finds an effective projection direction in the kernel feature space and the reduced

kernel approximation works well, too. For multi-class problems, the first four data sets

are not pre-divided into training and testing sets. For these data sets, we use ten-fold

cross validation and report their average error rates over 10 replicate runs of ten-fold CV.

Results are listed in the middle panel of Table 4. For the rest multi-class data sets, there

are separate testing sets. The results of ten replicate runs are reported in the lower panel

of Table 4. Note that for the medline data set, the variable dimensionality is 22095.

For this example we look for linear e.d.r. directions in the original pattern space instead

of kernel e.d.r. directions. As the dimensionality is so high that a direct application
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of the classical SIR, which calls for covariance matrices of size 22095, is not possible.

Our KSIR algorithm can overcome this problem by using the linear kernel, K = AA′

(even the reduced linear kernel, K = AÃ′). In linear kernel setting, the computation

cost is at most O(n3), where n is the sample size. This is the special handling for data

sets with n ¿ p, which is commonly seen in text mining and gene expression data sets.

From Table 4, we see that a simple linear SSVM algorithm acting on a few leading KSIR

variates can perform as good as nonlinear LIBSVM. The performance of FDA on KSIR

variates is a little worse than SSVM on KSIR variates and nonlinear LIBSVM, but the

difference is small.

Table 4: The average error rate for FDA and linear SSMV on KSIR variates compared with

nonlinear LIBSVM on classification data sets.

Data set KSIR+FDA KSIR+SSVM LIBSVM

banana 0.1170 0.1214 0.1228

tree 0.1234 0.1179 0.1283

splice 0.1292 0.1200 0.1012

adult 0.1671 0.1488 0.1491

web 0.0169 0.0149 0.0090

Iris 0.0213 0.0227 0.0380

wine 0.0131 0.0094 0.0181

vehicle 0.1468 0.1483 0.1429

segment 0.0309 0.0288 0.0283

dna 0.0659 0.0453 0.0460

satimage 0.0914 0.0904 0.0872

pendigits 0.0224 0.0188 0.0177

medline 0.1208 0.1136 0.1106

Another issue is the computing time comparison. We record all the computing time

CPU seconds in Table 6. All the experiments are executed in the same environment.

The equipment of the computer is CPU P4 3.0GHz, Memory 1.0G and operating system

XP. It can be seen that KSIR+FDA and KSIR+SSVM are often faster than LIBSVM
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in training time especially for large data sets and multi-class problems. For multi-class

problems, we used “one-versus-one” scheme to decompose the problem into a series of bi-

nary classification subproblems and combine them by a majority vote. The KSIR+FDA

and KSIR+SSVM only have to run the KSIR algorithm once, which consumes the ma-

jor part of the computing time in one complete run of discriminant analysis. Once we

have the e.d.r variates with dimensionality J − 1, a series of binary SSVMs or one FDA

machine in this (J − 1)-dimensional subspace is computationally light to carry out. In

comparing the hybrid of KSIR with linear SSVM versus the nonlinear LIBSVM, both

have to build a series of CJ
2 many binary classifiers. The former needs a one-time-only

KSIR process in a reduced feature subspace of dimensionality ñ and then builds a se-

ries of binary classifiers in a (J − 1)-dimensional KSIR extracted subspace, while the

latter builds such a series of binary classifiers in a higher dimensional feature space of

dimensionality about the size 2n/J . We only report the training time comparison with

LIBSVM. The testing time for linear learning algorithms (FDA and SSVM here, and

RLS-SVR in next subsection) on KSIR test variates are prominently and uniformly faster

than LIBSVM in regression and in classification, and thus we omit the report of testing

time comparison. The efficient testing time is due to the fact that KSIR-based learning

algorithms are acting on very low-dimensional KSIR variates, while LIBSVM is acting

in the high dimensional feature space and its speed depends on the number of support

vectors, which is much larger than the e.d.r. dimensionality.

4.3 KSIR dimension reduction for regression

Different from classification problems, KSIR for regression can be more complicated than

classification due to the lack of intuitive slices. In regression, we need to consider more

factors, like the number of slices, their positioning and the dimensionality of the final

e.d.r. subspace. For positioning of slices, we adopt a simple equal frequency strategy

for it. For the number of slices, we fix at 30 slices in all our regression examples,

because it performs reasonably well among a few quick trials of various numbers of
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Table 5: The training time (seconds) of FDA and linear SSVM on KSIR variates compared with

nonlinear LIBSVM on classification data sets.

Data set KSIR+FDA KSIR+SSVM LIBSVM

banana 0.063 0.078 0.016

tree 0.141 0.078 0.078

splice 0.109 0.109 0.422

adult 6.032 6.110 255.631

web 37.374 37.406 174.190

dna 0.329 0.344 2.900

satimage 3.828 3.953 4.593

pendigits 1.390 2.058 2.953

medline 1.993 2.016 3.033

slices. It is also known that the results are quite robust to the slice number (Li, 1991).

In determining the number of extracted components for final data analysis, we take two

different numbers of dimensionality, 3 and 29, for simplicity. There are more rigorous

statistical procedures based on output eigenvalues to determine the dimensionality of

e.d.r. subspace (Cook, 1998; Ferré, 1998; Li, 1991). However, we will not pursue

this issue here. The dimensionality 29 is the largest that we can go for 30 slices. In

our empirical experience, the last few eigenvalues are relatively much smaller than the

leading ones. Often a few leading directions, say 3, can be well enough for describing

the response without losing much information.

After extracting the KSIR directions, we apply the linear regularized least square

(RLS) fit of the responses on KSIR variates. The testing results of KSIR+RLS are

compared with nonlinear SVR provided in LIBSVM. Note that a reduced kernel approx-

imation has been used in KSIR for all our regression examples. The R2 values based

on ten-fold cross validation are shown in Table 6. R2 is a commonly used criterion for
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Table 6: R2 of RLS on 3 and 29 KSIR variates compared with R2 of nonlinear LIBSVM on

regression data sets.

Data set KSIR(3)+RLS KSIR(29)+RLS LIBSVM

housing 0.8543 0.8462 0.8687

Comp Activ 1000 0.9685 0.9732 0.9776

Kin fh 1000 0.6452 0.6482 0.6491

Comp Activ 0.9760 0.9789 0.9820

Kin fh 0.6964 0.6975 0.7014

Friedman 0.9556 0.9556 0.9559

evaluation of regression goodness of fit. Its definition is given below:

R2 = 1− ‖y − ŷ‖2

‖y − ȳ‖2
,

where ŷ is the fitted response and ȳ is the grand mean. We can see that the difference in

R2 between KSIR(29)+RLS and nonlinear LIBSVM is not significant. Note that non-

linear LIBSVM is only a little better than KSIR(3)+RLS. In other words, KSIR+RLS is

competent for regression even with only 3 components. Computing time comparison is

reported in Table 7. KSIR+RLS is much faster than nonlinear LIBSVM, especially for

large data problems. All these results reflect the same phenomenon found in classifica-

tion problems, that KSIR can find effective e.d.r. directions to speed up the computation

for regression fit with satisfactory results.

4.4 Parameter tuning

Throughout our experimental study, the Gaussian kernel K(x, u) = exp(−γ‖x− u‖2) is

used except for the medline data set. For either KSIR-based methods or the conven-

tional SVMs, such as LIBSVM, there are two parameters involved, namely, the weight

parameter C and the Gaussian kernel width parameter γ. The naive tuning procedure, a

two-dimensional grid search, in conventional SVMs is time consuming. A remedy for it is
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Table 7: The training time (seconds) of RLS on 3 and 29 KSIR variates compared with the training

time of nonlinear LIBSVM on regression data sets.

Data set KSIR(3)+RLS KSIR(29)+RLS LIBSVM

housing 0.022 0.040 0.211

Comp Activ 1000 0.023 0.056 0.505

Kin fh 1000 0.022 0.041 0.395

Comp Activ 1.423 1.508 27.606

Kin fh 1.416 1.502 20.950

Friedman 8.452 8.745 2400.1

to replace the bulldozer grid-search by a well-designed search scheme to reduce comput-

ing load. For instance, the nested uniform design (UD) model selection method (Huang,

Lee, Lin, & Huang, 2007) provides an economic alternative for parameter tuning. It

has been numerically shown that there is no significant difference in testing accuracy by

using a nested-UD search to replace the grid search. Thus, in our experimental study,

the nest-UD is adopted for parameter tuning in LIBSVM. As for KSIR-based methods,

computing time for parameter tuning is a lot lighter than that for conventional SVMs,

even if the latter is equipped with a UD-based search. Tuning procedure for KSIR-based

methods is nearly a one-dimensional search for γ, as the search for C is computationally

light and negligible. KSIR-based methods are carried out in two stages. At the first

stage, a parameter value for γ is needed for training KSIR e.d.r. subspace. At the

second, a parameter value for C is needed for linear SSVM or RLS on KSIR variates.

For each γ and its resulting e.d.r. subspace, an optimal C is determined over a range of

grid points. This tuning procedure at the second stage for C is computationally light,

as it is carried out in a very low-dimensional e.d.r. subspace and the time complexities

of linear SSVM and RLS depend on the dimensionality of the e.d.r. subspace. For each

fixed γ we can try a few C values to pair with this γ without much computing cost. This

is another computing merit of KSIR approach in practical usage.
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5 Conclusion

We have introduced an effective nonlinear dimension reduction technique, KSIR, which

kernelizes the classical SIR algorithm using the same notion of spectrum decomposition

in a feature RKHS. The KSIR algorithm first maps the pattern data to an appropriate

RKHS, and next extracts the main linear features in this embedded feature space. It

takes class labels or regression response information into account and is a supervised di-

mension reduction method. After the extraction of the e.d.r. subspace, many supervised

linear learning algorithms, such as FDA, SVM, SVR and possible others, can be applied

to the images of input data in this e.d.r. feature subspace. This will generate a nonlin-

ear learning model in the original input space and achieve a very good performance for

complex data analysis. We have also incorporated reduced kernel approximation to cut

down the computational load and to resolve the numerical instability due to singularity

in between-slice covariance matrix. The singularity problem not only causes numerical

instability but also leads to inferior e.d.r. directions estimation.

A few leading components extracted by KSIR can carry most of the relevant infor-

mation about y in regression and in classification. It allows us to run linear learning

algorithms in a very low dimensional e.d.r. subspace and to gain computational ad-

vantages without sacrificing the performance of learning algorithms. For example in

solving nonlinear SVM multi-class problem, one has to solve CJ
2 nonlinear binary SVMs

under the “one-versus-one” scheme. In KSIR-based approach, it only involves solving

the KSIR problem once, and the remaining task is solved by a series of CJ
2 many linear

binary SVMs in a (J − 1)-dimensional space. Moreover, KSIR approach also has an ad-

vantage in tuning procedure. We have demonstrated these nice merits in our numerical

experiments. Finally, using the first one or two components will help scientists or data

analysts to gain a direct insight of data patterns, which will be otherwise complex in

high dimension.
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Appendix: KSIR in an RKHS Framework

The classical SIR looks for e.d.r. directions in the pattern Euclidean space for maximum

between-slice dispersion with respect to overall dispersion. Based on the same idea of

maximum between-slice dispersion, the kernel transform embeds the Euclidean pattern

space X into an appropriate HK by Γ : x 7→ K(x, ·). Next KSIR looks for e.d.r.

directions in HK that maximizes the between-slice dispersion with respect to the total

dispersion. For technical details, we need to introduce a few more notations. Define

below the grand mean function m(·), conditional mean function my(·), covariance kernel

Σ and between-slice covariance kernel ΣB:

m(s) = E{K(x, s)}, (17)

my(s) = E {K(x, s)|y} , (18)

Σ(s, t) = E {(K(x, s)−m(s))(K(x, t)−m(t))} , (19)

ΣB(s, t) = E {(my(s)−m(s))(my(t)−m(t))} . (20)

Σ and ΣB are also called covariance operators, as they induce linear operators on HK

given by

(Σf)(·) =
∫

K(x, ·)f(x)dPx(x)

and

(ΣBf)(·) =
∫

E (K(x, ·)|y) E (f(x)|y) dPy(y).

KSIR solves the spectral decomposition of the between-slice covariance operator ΣB with

respect to the overall covariance operator Σ. That is, it aims to find leading directions

hk ∈ HK to

maximize ΣBhk = λkΣhk subject to 〈hk, Σhk〉HK
= δkj , (21)

where δkk = 1 and δkj = 0 for k 6= j. Below is a functional version of Theorem 1.

Theorem 1* Assume the existence of an e.d.r. subspace H = span{h1, . . . , hd} in HK

and the validity of the LDC (10). Further assume that the covariance operator Σ is
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compact and non-singular and that my −m is in the range of Σ1/2. 3 Then the central

inverse regression curve my −m falls into the subspace Σ(H).

Proof of Theorem 1*: Note that for any f, g ∈ HK we have (Janson, 1997)

〈m, f〉HK
= E〈K(x, ·), f(·)〉HK

= Ef(x) and 〈Σf, g〉HK
= Cov{f(x), g(x)}.

In particular, take g = K(u, ·) and f = hk, we have

〈Σhk, g〉HK
= Cov{hk(x),K(x, u)}. (22)

Also the covariance of hi(x) and hj(x) is given by

Cov{hi(x), hj(x)} = 〈Σhi, hj〉HK
. (23)

Let ΣH denote the matrix with the (i, j)th entry given by (23) and let H(x) be the

random vector (column vector) given by H(x) = (h1(x), . . . , hd(x))′. Note that

my(·)−m(·) = E

{
E(K(x, ·)|H(x))−m(·)

∣∣∣∣y
}

.

By the LDC we have E(K(x, ·)|H(x))−m(·) is linear in H(x), which leads to

E(K(x, u)|H(x))−m(u) = c(u)H(x),

where c(u) = Cov{K(x, u),H(x)′}Σ−1
H (a d-row vector) by the application of least

squares linear regression. From (22) we have

c(u) = 〈ΣH(·)′, K(·, u)〉HK
Σ−1

H = (ΣH(u))′Σ−1
H .

ΣH(u) is independent of y and is in span{Σh1(u), . . . , ΣKhd(u)}. 2

Theorem 1* says that (my − m) falls into the subspace Σ(H). In other words,

Σ−1(my − m) is in the e.d.r. subspace. Thus, orthonormalized Σ−1(my − m) can be

used for the estimation of e.d.r. directions. The idea is first to slice the y-variable into

3The compactness condition is to ensure that 〈f, Σg〉HK
is well-defined and the last condition on my −m

is to ensure that 〈my −m,Σ−1(my −m)〉HK
exists and won’t go unbounded.
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J slices and denote the slice means by mj , i.e., mj(·) = E{K(x, ·)|y ∈ jth slice}. Next

is to orthonormalize Σ−1(mj − m), j = 1, . . . , J , and use them for e.d.r. directions.

The idea can be formalized in the following proposition. Let M be a J × J matrix with

(j, j′)th entry given by

M :=
[√

πjπj′ 〈mj −m, Σ−1(mj′ −m)〉HK

]
jj′ ,

where πj is the prior probability for the jth slice. Denote its decomposition by M =

UDU ′, where U consists of eigenvectors with non-zero eigenvalues and D is a diagonal

matrix of non-zero eigenvalues. Let W = (w1, . . . , wJ), J many functions arranged in

row, where wj(u) = √
πj (mj(u)−m(u)) is the jth centered weighted slice mean.

Proposition 2* Σ−1WUD−1/2 are e.d.r. directions.

Proof of Proposition 2*: To show this proposition, we have to check that there exists a

certain positive definite diagonal matrix Λ such that

ΣB(Σ−1WUD−1/2) = Σ(Σ−1WUD−1/2)Λ and

(Σ−1WUD−1/2)′ Σ (Σ−1WUD−1/2) = I

hold. Note that ΣB can be written as ΣB = WW ′. Then,

ΣB(Σ−1WUD−1/2) = WW ′Σ−1WUD−1/2 = WUD1/2.

That is, take Λ = D. The derivation of the second assertion straightforwardly goes as

follows:

D−1/2U ′W ′Σ−1WUD−1/2 = D−1/2U ′MUD−1/2 = I.

The proof is completed. 2

In summary, KSIR is derived based on the same notion as SIR but in an infinite-

dimensional RKHS. Its procedure is simply the SIR procedure on kernel transformed

data.
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